DDMODEL00000087: Benson 2014 - FAAH Inhibitors Systems Pharmacology Model for Pain

  public model
Short description:
A simulation systems pharmacology model developed for the human endocannabinoid system which aimed to optimize any further clinical development of FAAH inhibitors. This is a simulation model which has been curated by EMBL-EBI. The model is available in the BioModels Database and simulation can be performed (via the BioModels Online Simulation tool) at: http://www.ebi.ac.uk/biomodels-main/BIOMD0000000512.
PharmML (0.6)
  • A systems pharmacology perspective on the clinical development of Fatty Acid amide hydrolase inhibitors for pain.
  • Benson N, Metelkin E, Demin O, Li GL, Nichols D, van der Graaf PH
  • CPT: pharmacometrics & systems pharmacology, 1/2014, Volume 3, pages: e91
  • Xenologiq, Canterbury, Kent, UK.
  • The level of the endocannabinoid anandamide is controlled by fatty acid amide hydrolase (FAAH). In 2011, PF-04457845, an irreversible inhibitor of FAAH, was progressed to phase II clinical trials for osteoarthritic pain. This article discusses a prospective, integrated systems pharmacology model evaluation of FAAH as a target for pain in humans, using physiologically based pharmacokinetic and systems biology approaches. The model integrated physiological compartments; endocannabinoid production, degradation, and disposition data; PF-04457845 pharmacokinetics and pharmacodynamics, and cannabinoid receptor CB1-binding kinetics. The modeling identified clear gaps in our understanding and highlighted key risks going forward, in particular relating to whether methods are in place to demonstrate target engagement and pharmacological effect. The value of this modeling exercise will be discussed in detail and in the context of the clinical phase II data, together with recommendations to enable optimal future evaluation of FAAH inhibitors.CPT: Pharmacometrics Systems Pharmacology (2014) 3, e91; doi:10.1038/psp.2013.72; published online 15 January 2014.
Phylinda Chan
Context of model development: Mechanistic Understanding;
Long technical model description: A systems pharmacology (physiologically based pharmacokinetic and systems biology) model describes the cannabinoid (CB) receptor anandamide binding, the fatty acid ethanolamide metabolism and distribution in the human body; the mutually exclusive binding of ethanolamides to FAAH.;
Model compliance with original publication: Yes;
Model implementation requiring submitter’s additional knowledge: No;
Modelling context description: The model integrated physiological compartments; endocannabinoid production, degradation, and disposition data; PF-04457845 pharmacokinetics and pharmacodynamics, and cannabinoid receptor cannabinoid CB1-binding kinetics.;
Modelling task in scope: simulation;
Nature of research: Early clinical development (Phases I and II);
Therapeutic/disease area: CNS;
Annotations are correct.
This model is not certified.
  • Model owner: Phylinda Chan
  • Submitted: Apr 7, 2016 4:48:48 PM
  • Last Modified: May 25, 2016 9:42:00 AM
Revisions
  • Version: 6 public model Download this version
    • Submitted on: May 25, 2016 9:42:00 AM
    • Submitted by: Phylinda Chan
    • With comment: Updated model annotations.
  • Version: 4 public model Download this version
    • Submitted on: Apr 7, 2016 4:48:48 PM
    • Submitted by: Phylinda Chan
    • With comment: Edited model metadata online.

Independent variable time

Structural Model sm

Variable definitions

vA_degr_b=((((BRAIN ×FAAH_b) ×kcat_FAAH) ×a_FAAH_A) ×A_b)(Km_FAAH_A ×FAAH_D_b)
vO_degr_b=((((BRAIN ×FAAH_b) ×kcat_FAAH) ×a_FAAH_O) ×O_b)(Km_FAAH_O ×FAAH_D_b)
vP_degr_b=((((BRAIN ×FAAH_b) ×kcat_FAAH) ×a_FAAH_P) ×P_b)(Km_FAAH_P ×FAAH_D_b)
vL_degr_b=((((BRAIN ×FAAH_b) ×kcat_FAAH) ×a_FAAH_L) ×L_b)(Km_FAAH_L ×FAAH_D_b)
vS_degr_b=((((BRAIN ×FAAH_b) ×kcat_FAAH) ×a_FAAH_S) ×S_b)(Km_FAAH_S ×FAAH_D_b)
vNAPE_syn_b=((((BRAIN ×Vmax_NAT) ×p_A) ×a_NAT_A) ×b_NAT_Brain)
vNOPE_syn_b=((((BRAIN ×Vmax_NAT) ×p_O) ×a_NAT_O) ×b_NAT_Brain)
vNPPE_syn_b=((((BRAIN ×Vmax_NAT) ×p_P) ×a_NAT_P) ×b_NAT_Brain)
vNLPE_syn_b=((((BRAIN ×Vmax_NAT) ×p_L) ×a_NAT_L) ×b_NAT_Brain)
vNSPE_syn_b=((((BRAIN ×Vmax_NAT) ×p_S) ×a_NAT_S) ×b_NAT_Brain)
vA_syn_b=(((BRAIN ×PLD_b) ×k_NA_PE) ×NAPE_b)Km_NA_PEden_b
vO_syn_b=(((BRAIN ×PLD_b) ×k_NO_PE) ×NOPE_b)Km_NO_PEden_b
vP_syn_b=(((BRAIN ×PLD_b) ×k_NP_PE) ×NPPE_b)Km_NP_PEden_b
vL_syn_b=(((BRAIN ×PLD_b) ×k_NL_PE) ×NLPE_b)Km_NL_PEden_b
vS_syn_b=(((BRAIN ×PLD_b) ×k_NS_PE) ×NSPE_b)Km_NS_PEden_b
vFAAH_syn_b=(((BRAIN ×FAAH_t) ×b_FAAH_Brain) ×k_deg_FAAH)
vFAAH_degr_b=((BRAIN ×k_deg_FAAH) ×FAAH_b)
vFAAH_inh_b=(((BRAIN ×k_inh) ×FAAH_b) ×PF_b)
vFAAH_inh_degr_b=((BRAIN ×k_deg_FAAH) ×FAAHinh_b)
vA_UE_b=(((BRAIN ×b_FAAH_Brain) ×kcl_A) ×A_b)
vO_UE_b=(((BRAIN ×b_FAAH_Brain) ×kcl_O) ×O_b)
vP_UE_b=(((BRAIN ×b_FAAH_Brain) ×kcl_P) ×P_b)
vL_UE_b=(((BRAIN ×b_FAAH_Brain) ×kcl_L) ×L_b)
vS_UE_b=(((BRAIN ×b_FAAH_Brain) ×kcl_S) ×S_b)
vA_degr_r=((((ROB ×FAAH_r) ×kcat_FAAH) ×a_FAAH_A) ×A_r)(Km_FAAH_A ×FAAH_D_r)
vO_degr_r=((((ROB ×FAAH_r) ×kcat_FAAH) ×a_FAAH_O) ×O_r)(Km_FAAH_O ×FAAH_D_r)
vP_degr_r=((((ROB ×FAAH_r) ×kcat_FAAH) ×a_FAAH_P) ×P_r)(Km_FAAH_P ×FAAH_D_r)
vL_degr_r=((((ROB ×FAAH_r) ×kcat_FAAH) ×a_FAAH_L) ×L_r)(Km_FAAH_L ×FAAH_D_r)
vS_degr_r=((((ROB ×FAAH_r) ×kcat_FAAH) ×a_FAAH_S) ×S_r)(Km_FAAH_S ×FAAH_D_r)
vNAPE_syn_r=(((Vmax_NAT ×p_A) ×a_NAT_A) ×c_NAT_ROB)
vNOPE_syn_r=(((Vmax_NAT ×p_O) ×a_NAT_O) ×c_NAT_ROB)
vNPPE_syn_r=(((Vmax_NAT ×p_P) ×a_NAT_P) ×c_NAT_ROB)
vNLPE_syn_r=(((Vmax_NAT ×p_L) ×a_NAT_L) ×c_NAT_ROB)
vNSPE_syn_r=(((Vmax_NAT ×p_S) ×a_NAT_S) ×c_NAT_ROB)
vA_syn_r=(((ROB ×PLD_r) ×k_NA_PE) ×NAPE_r)Km_NA_PEden_r
vO_syn_r=(((ROB ×PLD_r) ×k_NO_PE) ×NOPE_r)Km_NO_PEden_r
vP_syn_r=(((ROB ×PLD_r) ×k_NP_PE) ×NPPE_r)Km_NP_PEden_r
vL_syn_r=(((ROB ×PLD_r) ×k_NL_PE) ×NLPE_r)Km_NL_PEden_r
vS_syn_r=(((ROB ×PLD_r) ×k_NS_PE) ×NSPE_r)Km_NS_PEden_r
vFAAH_syn_r=((FAAH_t ×c_FAAH_ROB) ×k_deg_FAAH)
vFAAH_degr_r=((ROB ×k_deg_FAAH) ×FAAH_r)
vFAAH_inh_r=(((ROB ×k_inh) ×FAAH_r) ×PF_r)
vFAAH_inh_degr_r=((ROB ×k_deg_FAAH) ×FAAHinh_r)
vA_UE_r=((c_NAAA_ROB ×kcl_A) ×A_r)
vO_UE_r=((c_NAAA_ROB ×kcl_O) ×O_r)
vP_UE_r=((c_NAAA_ROB ×kcl_P) ×P_r)
vL_UE_r=((c_NAAA_ROB ×kcl_L) ×L_r)
vS_UE_r=((c_NAAA_ROB ×kcl_S) ×S_r)
vA_degr_m=((((MEC ×FAAH_m) ×kcat_FAAH) ×a_FAAH_A) ×A_m)(Km_FAAH_A ×FAAH_D_m)
vO_degr_m=((((MEC ×FAAH_m) ×kcat_FAAH) ×a_FAAH_O) ×O_m)(Km_FAAH_O ×FAAH_D_m)
vP_degr_m=((((MEC ×FAAH_m) ×kcat_FAAH) ×a_FAAH_P) ×P_m)(Km_FAAH_P ×FAAH_D_m)
vL_degr_m=((((MEC ×FAAH_m) ×kcat_FAAH) ×a_FAAH_L) ×L_m)(Km_FAAH_L ×FAAH_D_m)
vS_degr_m=((((MEC ×FAAH_m) ×kcat_FAAH) ×a_FAAH_S) ×S_m)(Km_FAAH_S ×FAAH_D_m)
vFAAH_syn_m=(((MEC ×FAAH_t) ×b_FAAH_MEC) ×k_deg_FAAH)
vFAAH_degr_m=((MEC ×k_deg_FAAH) ×FAAH_m)
vFAAH_inh_m=(((MEC ×k_inh) ×FAAH_m) ×PF_m)
vFAAH_inh_degr_m=((MEC ×k_deg_FAAH) ×FAAHinh_m)
vA_m_p=((MEC ×ktr_m_p_A) ×(A_m-(A_p ×Ktr_p_m_A)))((A_m+A_p)+Km_p_m_A)
vo_m_p=((MEC ×ktr_m_p_O) ×(O_m-(O_p ×Ktr_p_m_O)))
vP_m_p=((MEC ×ktr_m_p_P) ×(P_m-(P_p ×Ktr_p_m_P)))
vL_m_p=((MEC ×ktr_m_p_L) ×(L_m-(L_p ×Ktr_p_m_L)))
vS_m_p=((MEC ×ktr_m_p_S) ×(S_m-(S_p ×Ktr_p_m_S)))
vA_b_m=((MEC ×ktr_m_p_A) ×(A_b-A_m))((A_b+A_b)+Km_p_m_A)
vO_b_m=((MEC ×ktr_m_p_O) ×(O_b-O_m))
vP_b_m=((MEC ×ktr_m_p_P) ×(P_b-P_m))
vL_b_m=((MEC ×ktr_m_p_L) ×(L_b-L_m))
vS_b_m=((MEC ×ktr_m_p_S) ×(S_b-S_m))
vA_r_p=((PLASMA ×ktr_r_p) ×(A_r-(A_p ×Ktr_p_r_A)))((A_r+A_p)+Km_p_m_A)
vO_r_p=((PLASMA ×ktr_r_p) ×(O_r-(O_p ×Ktr_p_r_O)))
vP_r_p=((PLASMA ×ktr_r_p) ×(P_r-(P_p ×Ktr_p_r_P)))
vL_r_p=((PLASMA ×ktr_r_p) ×(L_r-(L_p ×Ktr_p_r_L)))
vS_r_p=((PLASMA ×ktr_r_p) ×(S_r-(S_p ×Ktr_p_r_S)))
absorp=(kabs_PFM ×MD)
dist=((kout_PFM ×PFM_p)-(kin_PFM ×PFM_r))
elim=((klinear_PFM ×PFM_p)+(Vm_PFM ×PFM_p)(Km_PFM+PFM_pVss_PFM)Vss_PFM)
dA_bdtime=((((-1 ×vA_degr_b)+(1 ×vA_syn_b))+(-1 ×vA_UE_b))+(-1 ×vA_b_m))
dO_bdtime=((((-1 ×vO_degr_b)+(1 ×vO_syn_b))+(-1 ×vO_UE_b))+(-1 ×vO_b_m))
dP_bdtime=((((-1 ×vP_degr_b)+(1 ×vP_syn_b))+(-1 ×vP_UE_b))+(-1 ×vP_b_m))
dL_bdtime=((((-1 ×vL_degr_b)+(1 ×vL_syn_b))+(-1 ×vL_UE_b))+(-1 ×vL_b_m))
dS_bdtime=((((-1 ×vS_degr_b)+(1 ×vS_syn_b))+(-1 ×vS_UE_b))+(-1 ×vS_b_m))
dNAPE_bdtime=((1 ×vNAPE_syn_b)+(-1 ×vA_syn_b))
dNOPE_bdtime=((1 ×vNOPE_syn_b)+(-1 ×vO_syn_b))
dNPPE_bdtime=((1 ×vNPPE_syn_b)+(-1 ×vP_syn_b))
dNLPE_bdtime=((1 ×vNLPE_syn_b)+(-1 ×vL_syn_b))
dNSPE_bdtime=((1 ×vNSPE_syn_b)+(-1 ×vS_syn_b))
dFAAH_bdtime=(((1 ×vFAAH_syn_b)+(-1 ×vFAAH_degr_b))+(-1 ×vFAAH_inh_b))
dFAAHinh_bdtime=((1 ×vFAAH_inh_b)+(-1 ×vFAAH_inh_degr_b))
dA_rdtime=((((-1 ×vA_degr_r)+(1 ×vA_syn_r))+(-1 ×vA_UE_r))+(-1 ×vA_r_p))
dO_rdtime=((((-1 ×vO_degr_r)+(1 ×vO_syn_r))+(-1 ×vO_UE_r))+(-1 ×vO_r_p))
dP_rdtime=((((-1 ×vP_degr_r)+(1 ×vP_syn_r))+(-1 ×vP_UE_r))+(-1 ×vP_r_p))
dL_rdtime=((((-1 ×vL_degr_r)+(1 ×vL_syn_r))+(-1 ×vL_UE_r))+(-1 ×vL_r_p))
dS_rdtime=((((-1 ×vS_degr_r)+(1 ×vS_syn_r))+(-1 ×vS_UE_r))+(-1 ×vS_r_p))
dNAPE_rdtime=((1 ×vNAPE_syn_r)+(-1 ×vA_syn_r))
dNOPE_rdtime=((1 ×vNOPE_syn_r)+(-1 ×vO_syn_r))
dNPPE_rdtime=((1 ×vNPPE_syn_r)+(-1 ×vP_syn_r))
dNLPE_rdtime=((1 ×vNLPE_syn_r)+(-1 ×vL_syn_r))
dNSPE_rdtime=((1 ×vNSPE_syn_r)+(-1 ×vS_syn_r))
dFAAH_rdtime=(((1 ×vFAAH_syn_r)+(-1 ×vFAAH_degr_r))+(-1 ×vFAAH_inh_r))
dFAAHinh_rdtime=((1 ×vFAAH_inh_r)+(-1 ×vFAAH_inh_degr_r))
dA_mdtime=(((-1 ×vA_degr_m)+(-1 ×vA_m_p))+(1 ×vA_b_m))
dO_mdtime=(((-1 ×vO_degr_m)+(-1 ×vo_m_p))+(1 ×vO_b_m))
dP_mdtime=(((-1 ×vP_degr_m)+(-1 ×vP_m_p))+(1 ×vP_b_m))
dL_mdtime=(((-1 ×vL_degr_m)+(-1 ×vL_m_p))+(1 ×vL_b_m))
dS_mdtime=(((-1 ×vS_degr_m)+(-1 ×vS_m_p))+(1 ×vS_b_m))
dFAAH_mdtime=(((1 ×vFAAH_syn_m)+(-1 ×vFAAH_degr_m))+(-1 ×vFAAH_inh_m))
dFAAHinh_mdtime=((1 ×vFAAH_inh_m)+(-1 ×vFAAH_inh_degr_m))
dA_pdtime=((1 ×vA_m_p)+(1 ×vA_r_p))
dO_pdtime=((1 ×vo_m_p)+(1 ×vO_r_p))
dP_pdtime=((1 ×vP_m_p)+(1 ×vP_r_p))
dL_pdtime=((1 ×vL_m_p)+(1 ×vL_r_p))
dS_pdtime=((1 ×vS_m_p)+(1 ×vS_r_p))
dPFM_gutdtime=(1Default ×(-1 ×absorp))
dPFM_pdtime=(((1 ×absorp)+(-1 ×dist))+(-1 ×elim))
dPFM_rdtime=(1 ×dist)

Initial conditions

A_b=0.7493309
O_b=20.77858
P_b=6.541209
L_b=2.319571
S_b=3.427807
NAPE_b=3.879041E-5
NOPE_b=8.814287E-4
NPPE_b=1.732296E-4
NLPE_b=7.550331E-5
NSPE_b=1.272629E-4
FAAH_b=15.366
FAAHinh_b=0.0
A_r=0.5419204
O_r=14.23822
P_r=4.121915
L_r=1.705466
S_r=2.515968
NAPE_r=4.241633E-6
NOPE_r=9.638198E-5
NPPE_r=1.894222E-5
NLPE_r=8.256095E-6
NSPE_r=1.391587E-5
FAAH_r=2.165868
FAAHinh_r=0.0
A_m=0.97761
O_m=16.3219
P_m=5.809415
L_m=0.0
S_m=2.968774
FAAH_m=10.686
FAAHinh_m=0.0
A_p=0.8740574
O_p=5.085073
P_p=4.849307
L_p=1.916254
S_p=0.273772
PFM_gut=0.0
PFM_p=0.0
PFM_r=0.0

Parameter Model

Parameters

Cannot display simple parameters.

Simulation Steps

Simulation step ss

Observation

Type:Continuous

Variables:A_b O_b P_b L_b S_b NAPE_b NOPE_b NPPE_b NLPE_b NSPE_b FAAH_b FAAHinh_b A_r O_r P_r L_r S_r NAPE_r NOPE_r NPPE_r NLPE_r NSPE_r FAAH_r FAAHinh_r A_m O_m P_m L_m S_m FAAH_m FAAHinh_m A_p O_p P_p L_p S_p PFM_gut PFM_p PFM_r

Independent variable(time): 0.0:0.1:100.0

Step Dependencies

  • ss
 
Help