DDMODEL00000129: Peigne_2015_Ivabradine

  public model
Short description:
Model comprised of files: Data_Accomodations.txt, Peigne_2015_Ivabradine.xml, Executable_Peigne_2015_Ivabradine_algorithms.xmlx, Simulated_Peigne_2015_Ivabradine.csv, Executable_Peigne_2015_Ivabradine.mlxtran, Output_simulated_Peigne_2015_Ivabradine.zip, Peigne_2015_Ivabradine.mdl, Model_Peigne_2015_Ivabradine.txt, Executable_Peigne_2015_Ivabradine_graphics.xmlx, Command.txt
PharmML (0.6.1)
  • Model-based approaches for ivabradine development in paediatric population, part II: PK and PK/PD assessment.
  • Peigné S, Fouliard S, Decourcelle S, Chenel M
  • Journal of pharmacokinetics and pharmacodynamics, 11/2015
  • Clinical Pharmacokinetics and Pharmacometrics Department, Institut de Recherches Internationales Servier, Suresnes, France. sophie.peigne@servier.com.
  • The objectives of this work were first to describe the pharmacokinetic (PK) of ivabradine and its active metabolite in a paediatric patient population after repeated oral administration of ivabradine using a population PK approach, and secondly to assess whether the blood/plasma ratio and the pharmacokinetic/pharmacodynamic (PK/PD) relationship are preserved in the paediatric population in comparison to adult. PK data for 70 patients were obtained after blood sampling using dried blood spot and one plasma sample in order to assess the relationship between blood and plasma concentration. In order to describe ivabradine and its metabolite blood concentrations in children, a joint population PK model was developed taking into account weight & age effects on PK parameters. Plasma PK exposure parameters were calculated in children using plasma PK profiles. In order to assess the PK/PD relationship in children, an adult PK/PD model was used. The relationship between blood and plasma concentrations was described using linear mixed effect models. Two and one-compartment models best described parent and metabolite dispositions. Weight effects were fixed to the allometric values of ¾ on clearance (CL) and 1 on volume. A maturation function was added on metabolite formation clearance (CL PM ) reflecting enzyme maturation. Plasma exposure comparison indicated that higher dose/kg were necessary to achieve a similar exposure between younger and older children. No differences between age classes were observed in terms of range of exposure at the maintenance dose. The PK/PD relationship in adult patients is conserved in children.
Vincent Croixmarie
Annotations have not been checked.
This model is not certified.
  • Model owner: Vincent Croixmarie
  • Submitted: Feb 12, 2016 5:16:12 PM
  • Last Modified: Feb 12, 2016 5:16:12 PM
Revisions
  • Version: 8 public model Download this version
    • Submitted on: Feb 12, 2016 5:16:12 PM
    • Submitted by: Vincent Croixmarie
    • With comment: Edited model metadata online.

Independent variable T

Function Definitions

proportionalError(proportional,f)=(proportional ×f)
combinedError1(additive,proportional,f)=(additive+(proportional ×f))

Structural Model sm

Variable definitions

dDEP1dT=((-DEP1 ×ka1) ×((F1 ×(2-PER))+((F1 ×IOV_F1) ×(PER-1))))
dQCdT=((((DEP1 ×ka1) ×((F1 ×(2-PER))+((F1 ×IOV_F1) ×(PER-1))))-((((CLp+CLPM)+Q1) ×ALLOM_TRANS)(V1 ×ALLOM_VOL) ×QC))+((Q1 ×ALLOM_TRANS)(V3 ×ALLOM_VOL) ×QP))
dQPdT=(((Q1 ×ALLOM_TRANS)(V1 ×ALLOM_VOL) ×QC)-((Q1 ×ALLOM_TRANS)(V3 ×ALLOM_VOL) ×QP))
dDEP2dT=((-DEP2 ×ka2) ×F2)
dQMdT=((((DEP2 ×ka2) ×F2)+((CLPM ×ALLOM_MET)(V1 ×ALLOM_VOL) ×QC))-((CLm ×ALLOM_TRANS)((V1+V3) ×ALLOM_VOL) ×QM))
CC=QC(V1 ×ALLOM_VOL)
CM=QM((V1+V3) ×ALLOM_VOL)

Initial conditions

DEP1=0
QC=0
QP=0
DEP2=0
QM=0

Variability Model

Level Type

DV

residualError

ID

parameterVariability

Covariate Model

Continuous covariate PER

Continuous covariate WT

Continuous covariate AGE

Parameter Model

Parameters
POP_ka1 POP_F1 DUMMY_PARAMETER POP_ka2 POP_F2 POP_V1 POP_V3 POP_Q1 POP_CLPM POP_CLp POP_CLm Y1_PROP Y2_PROP Y2_ADD OMEGA_ka1 OMEGA_F1 OMEGA_IOV_F1 OMEGA_V1 OMEGA_V3 OMEGA_Q1 OMEGA_CLPM OMEGA_CLp OMEGA_CLm ALLOM_TRANS=WT14.50.75 ALLOM_MET=AGE0.83(0.31+AGE0.83) ALLOM_VOL=WT14.5
ETA_ka1N(0.0,OMEGA_ka1) — ID
ETA_F1N(0.0,OMEGA_F1) — ID
ETA_IOV_F1N(0.0,OMEGA_IOV_F1) — ID
ETA_V1N(0.0,OMEGA_V1) — ID
ETA_V3N(0.0,OMEGA_V3) — ID
ETA_Q1N(0.0,OMEGA_Q1) — ID
ETA_CLPMN(0.0,OMEGA_CLPM) — ID
ETA_CLpN(0.0,OMEGA_CLp) — ID
ETA_CLmN(0.0,OMEGA_CLm) — ID
EPS_Y1N(0.0,1.0) — DV
EPS_Y2N(0.0,1.0) — DV
log(ka1)=(log(POP_ka1)+ETA_ka1)
ka2=POP_ka2
log(F1)=(log(POP_F1)+ETA_F1)
F2=POP_F2
log(IOV_F1)=(log(DUMMY_PARAMETER)+ETA_IOV_F1)
log(V1)=(log(POP_V1)+ETA_V1)
log(V3)=(log(POP_V3)+ETA_V3)
log(Q1)=(log(POP_Q1)+ETA_Q1)
log(CLPM)=(log(POP_CLPM)+ETA_CLPM)
log(CLp)=(log(POP_CLp)+ETA_CLp)
log(CLm)=(log(POP_CLm)+ETA_CLm)

Observation Model

Observation Y1
Continuous / Residual Data

Parameters
Y1=(CC+(proportionalError(Y1_PROP,CC) ×EPS_Y1))

Observation Y2
Continuous / Residual Data

Parameters
Y2=(CM+(combinedError1(Y2_ADD,Y2_PROP,CM) ×EPS_Y2))

Estimation Steps

Estimation Step estimStep_1

Estimation parameters

Fixed parameters

  • POP_F1=0.38
  • DUMMY_PARAMETER=1
  • POP_ka2=0.51
  • POP_F2=0.18

Initial estimates for non-fixed parameters

  • POP_ka1=1.1
  • POP_V1=10
  • POP_V3=60
  • POP_Q1=50
  • POP_CLPM=39
  • POP_CLp=7
  • POP_CLm=40
  • Y1_PROP=0.3
  • Y2_PROP=0.3
  • Y2_ADD=1
  • OMEGA_ka1=1
  • OMEGA_F1=1
  • OMEGA_IOV_F1=1
  • OMEGA_V1=1
  • OMEGA_V3=1
  • OMEGA_Q1=1
  • OMEGA_CLPM=1
  • OMEGA_CLp=1
  • OMEGA_CLm=1
Estimation operations
1) Estimate the population parameters
    Algorithm SAEM

    Step Dependencies

    • estimStep_1
     
    Help