DDMODEL00000225: PKPD model for ciprofloxacin

  public model
Short description:
PKPD model for ciprofloxacin
PharmML (0.6.1)
  • A mechanism-based pharmacokinetic/pharmacodynamic model allows prediction of antibiotic killing from MIC values for WT and mutants
  • David Khan, Pernilla Lagerbäck, Sha Cao, Ulrika Lustig, Elisabet I. Nielsen, Otto Cars, Diarmaid Hughes, Dan I. Andersson, Lena E. Friberg
  • J Antimicrob Chemother, 11/2015
  • Uppsala University
  • OBJECTIVES: In silico pharmacokinetic/pharmacodynamic (PK/PD) models can be developed based on data from in vitro time-kill experiments and can provide valuable information to guide dosing of antibiotics. The aim was to develop a mechanism-based in silico model that can describe in vitro time-kill experiments of Escherichia coli MG1655 WT and six isogenic mutants exposed to ciprofloxacin and to identify relationships that may be used to simplify future characterizations in a similar setting. METHODS: In this study, we developed a mechanism-based PK/PD model describing killing kinetics for E. coli following exposure to ciprofloxacin. WT and six well-characterized mutants, with one to four clinically relevant resistance mutations each, were exposed to a wide range of static ciprofloxacin concentrations. RESULTS: The developed model includes susceptible growing bacteria, less susceptible (pre-existing resistant) growing bacteria, non-susceptible non-growing bacteria and non-colony-forming non-growing bacteria. The non-colony-forming state was likely due to formation of filaments and was needed to describe data close to the MIC. A common model structure with different potency for bacterial killing (EC50) for each strain successfully characterized the time-kill curves for both WT and the six E. coli mutants. CONCLUSIONS: The model-derived mutant-specific EC50 estimates were highly correlated (r(2)?=?0.99) with the experimentally determined MICs, implying that the in vitro time-kill profile of a mutant strain is reasonably well predictable by the MIC alone based on the model.
David Khan
Context of model development: Mechanistic Understanding;
Discrepancy between implemented model and original publication: M3, B2, MTIME and L2 not included in mdl file. ;
Long technical model description: PKPD model for ciprofloxacin;
Model compliance with original publication: Yes;
Model implementation requiring submitter’s additional knowledge: No;
Modelling context description: PKPD model for ciprofloxacin;
Modelling task in scope: estimation;
Nature of research: In vitro;
Therapeutic/disease area: Anti-infectives;
Annotations are correct.
This model is not certified.
  • Model owner: David Khan
  • Submitted: Oct 13, 2016 1:01:54 AM
  • Last Modified: Oct 13, 2016 1:01:54 AM
Revisions
  • Version: 11 public model Download this version
    • Submitted on: Oct 13, 2016 1:01:54 AM
    • Submitted by: David Khan
    • With comment: Edited model metadata online.

Independent variable T

Function Definitions

additiveError(additive)=additive

Structural Model sm

Variable definitions

SUS_RES1=(PROPC ×(((((SUS1+RES1)+SUS2)+NON1)+RES2)+NON2))
SUS_RES2=SUS_RES1
RES_SUS1=0
RES_SUS2=0
DRUGS1={(EMAX ×CABGAM)(EC50_1GAM+CABGAM)  if  (CAB>1.0E-11)0  otherwise
DRUGS2={(EMAX ×CABGAM)(EC50_2GAM+CABGAM)  if  (CAB>1.0E-11)0  otherwise
FLAG={1  if  (T<KSNC_TIME)0  otherwise
dSUS1dT=((((((KGS1 ×SUS1)-((KK+DRUGS1) ×SUS1))-(SUS_RES1 ×SUS1))+(RES_SUS1 ×RES1))+(KNCS1 ×NON1))-((KSNC1 ×SUS1) ×FLAG))
dRES1dT=(((-KK ×RES1)+(SUS_RES1 ×SUS1))-(RES_SUS1 ×RES1))
dSUS2dT=((((((KGS2 ×SUS2)-((KK+DRUGS2) ×SUS2))-(SUS_RES2 ×SUS2))+(RES_SUS2 ×RES2))+(KNCS2 ×NON2))-((KSNC2 ×SUS2) ×FLAG))
dNON1dT=((((KSNC1 ×SUS1) ×FLAG)-(KNCS1 ×NON1))-((KK+DRUGS1) ×NON1))
dRES2dT=((-KK ×RES2)+(SUS_RES2 ×SUS2))
dNON2dT=((((KSNC2 ×SUS2) ×FLAG)-(KNCS2 ×NON2))-((KK+DRUGS2) ×NON2))
ATOT=(((SUS1+RES1)+SUS2)+RES2)
LN_ATOT=log((ATOT+1.0E-8))

Initial conditions

SUS1=SUS1_INIT
RES1=0
SUS2=SUS2_INIT
NON1=0
RES2=0
NON2=0

Variability Model

Level Type

DV

residualError

ID

parameterVariability

Covariate Model

Continuous covariate STR

Continuous covariate CAB

Continuous covariate BASE

Parameter Model

Parameters
POP_KGS1 POP_KK POP_EMAX POP_EC50_202 POP_GAM POP_PROPC POP_KGS2 POP_EC50_2 POP_MUT POP_KSNC_MAX POP_SFNCS POP_HILL POP_TR50 POP_KSNC_TIME RUV_ADD log_k=10
EPS_YN(0.0,1.0) — DV
KGS1=POP_KGS1
KK=POP_KK
EMAX=POP_EMAX
EC50_1=POP_EC50_202
GAM=POP_GAM
PROPC=(POP_PROPC ×1.0E-7)
SBASE=exp(BASE)
KGS2=POP_KGS2
EC50_2=POP_EC50_2
MUT=POP_MUT
KSNC_MAX=POP_KSNC_MAX
SFNCS=POP_SFNCS
HILL=POP_HILL
TR50=POP_TR50
KSNC_TIME=POP_KSNC_TIME
SUS1_INIT=(SBASE ×(1-(MUT ×1.0E-6)))
SUS2_INIT=((MUT ×1.0E-6) ×SBASE)
KSNC1=(KSNC_MAX ×CABEC50_1HILL)(CABEC50_1HILL+TR50HILL)
KSNC2=(KSNC_MAX ×CABEC50_2HILL)(CABEC50_2HILL+TR50HILL)
KNCS1=(SFNCS ×EC50_1)(CAB+1.0E-10)
KNCS2=(SFNCS ×EC50_2)(CAB+1.0E-10)

Observation Model

Observation Y
Continuous / Residual Data

Parameters
Y=(LN_ATOT+(additiveError(RUV_ADD) ×EPS_Y))

Estimation Steps

Estimation Step estimStep_1

Estimation parameters

Fixed parameters

  • POP_KK=0.179
  • POP_KGS2=0.344
  • POP_EC50_2=1.25
  • POP_MUT=0.81
  • POP_KSNC_MAX=5.83
  • POP_HILL=20
  • POP_KSNC_TIME=5.47869

Initial estimates for non-fixed parameters

  • POP_KGS1=1.7
  • POP_EMAX=5.24
  • POP_EC50_202=0.057
  • POP_GAM=1.98
  • POP_PROPC=0.0186
  • POP_SFNCS=0.17
  • POP_TR50=0.24
  • RUV_ADD=2.544
Estimation operations
1) Estimate the population parameters
    Algorithm FOCEI

    Step Dependencies

    • estimStep_1
     
    Help