DDMODEL00000231: PK/PD model of sunitinib in non-small cell lung cancer patients

  public model
Short description:
Sunitinib is a potent inhibitor of receptor tyrosine kinases, including VEGFR-1, -2, and -3, stem cell factor receptor and others, which have been implicated in tumor cell growth indirectly via tumor-dependent angiogenesis. This is a semi-mechanistic PK/PD model developed and validated using clinical trail data.
PharmML (0.6.1)
Moran Optimata
Context of model development: Disease Progression model; Dose & Schedule Selection and Label Recommendation; Clinical end-point; Mechanistic Understanding;
Model implementation requiring submitter’s additional knowledge: Yes;
Modelling context description: This is a semi-mechanistic PK/PD model for sunitinib therapy in non-small cell lung cancer patients. It was developed and validated using clinical trail data provided by the drug developer.;
Modelling task in scope: estimation; simulation;
Nature of research: Early clinical development (Phases I and II);
Therapeutic/disease area: Oncology;
Annotations are correct.
This model is not certified.
  • Model owner: Moran Optimata
  • Submitted: Oct 27, 2016 9:32:06 AM
  • Last Modified: Oct 27, 2016 9:32:06 AM
Revisions
  • Version: 3 public model Download this version
    • Submitted on: Oct 27, 2016 9:32:06 AM
    • Submitted by: Moran Optimata
    • With comment: Updated model annotations.

Independent variable T

Function Definitions

proportionalError(proportional,f)=(proportional ×f)
combinedError1(additive,proportional,f)=(additive+(proportional ×f))

Structural Model sm

Variable definitions

D
dres=0
fp=0.21
th1=1
th2=1
th3=1
th4=1
thettum=1
Kah=(Ka ×24)
Kamh=(Kam ×24)
q=(24 ×Cl)V1
qm=(24 ×Clm)Vm1
k12=(24 ×QQ)V1
k21=(24 ×QQ)V2
km12=(24 ×QQm)Vm1
km21=(24 ×QQm)Vm2
stst1=exp(st1)
stst2=exp(st2)
stst3=exp(st3)
stst4=exp(st4)
kin1=(stst1 ×d1)
kin2=(stst2 ×d2)
kin3=(stst3 ×d3)
kin4=(stst4 ×d4)
maxgr=log(2)30
dA1dT=(((((Kah ×A14) ×(1-fp))-(k12 ×A1))+(k21 ×A2))-(q ×A1))
dA2dT=((k12 ×A1)-(k21 ×A2))
dA3dT=(((((Kamh ×A15) ×fp)-(km12 ×A3))+(km21 ×A4))-(qm ×A3))
dA4dT=((km12 ×A3)-(km21 ×A4))
dA5dT=(kin1-(d1 ×A5)(1+(pd1 ×((th1 ×A1)V1+((1-th1) ×A3)Vm1))))
dA6dT=(kin2(1+(pd2 ×((th2 ×A1)V1+((1-th2) ×A3)Vm1)))-(d2 ×A6))
dA7dT=(kin3(1+(pd3 ×((th3 ×A1)V1+((1-th3) ×A3)Vm1)))-(d3 ×A7))
dA8dT=(kin4(1+(pd4 ×((th4 ×A1)V1+((1-th4) ×A3)Vm1)))-(d4 ×A8))
RATEIN={(((min(maxgr,A13)-(lam0pdr ×A12))+(lam0 ×A11)) ×A9)  if  (A9>0)0  otherwise
dA9dT=RATEIN
dA10dT=((pdr ×((thettum ×max(0,A1V1))+((1-thettum) ×max(0,A3Vm1))))-(dres ×max(0,A10)))
dA11dT=(A12-(pdr ×A11))
dA12dT=(A1V1-(pdm ×A12))
dA13dT=(alphres ×A13)
dA14dT=(-Kah ×A14)
dA15dT=(-Kamh ×A15)
output1=A1V1
output2=A3Vm1
output3=A5
output4=A6
output5=A7
output6=A8
output7=(3(4 ×3.1416) ×max(A9,0))13

Initial conditions

A1=0
A2=0
A3=0
A4=0
A5=stst1
A6=stst2
A7=stst3
A8=stst4
A9=((43 ×3.1416) ×exp(x0)3)
A10=0
A11=0
A12=0
A13=lam
A14=D
A15=D

Variability Model

Level Type

DV

residualError

ID

parameterVariability

Parameter Model

Parameters
POP_d1 POP_d2 POP_d3 POP_d4 POP_QQm POP_pdr POP_st1 POP_st2 POP_st3 POP_st4 POP_x0 POP_pdm POP_lam POP_lam0 POP_alphres POP_pd1 POP_pd2 POP_pd3 POP_pd4 POP_Cl POP_V1 POP_QQ POP_V2 POP_Clm POP_Vm1 POP_Vm2 POP_Ka POP_Kam b_1 b_2 b_3 b_4 b_5 b_6 a_7 b_7 omega_d1 omega_d2 omega_d3 omega_d4 omega_QQm omega_pdr omega_st1 omega_st2 omega_st3 omega_st4 omega_x0 omega_pdm omega_lam omega_lam0 omega_alphres omega_pd1 omega_pd2 omega_pd3 omega_pd4 omega_Cl omega_V1 omega_QQ omega_V2 omega_Clm omega_Vm1 omega_Vm2 omega_Ka omega_Kam
ETA_d1N(0.0,omega_d1) — ID
ETA_d2N(0.0,omega_d2) — ID
ETA_d3N(0.0,omega_d3) — ID
ETA_d4N(0.0,omega_d4) — ID
ETA_QQmN(0.0,omega_QQm) — ID
ETA_pdrN(0.0,omega_pdr) — ID
ETA_st1N(0.0,omega_st1) — ID
ETA_st2N(0.0,omega_st2) — ID
ETA_st3N(0.0,omega_st3) — ID
ETA_st4N(0.0,omega_st4) — ID
ETA_x0N(0.0,omega_x0) — ID
ETA_pdmN(0.0,omega_pdm) — ID
ETA_lamN(0.0,omega_lam) — ID
ETA_lam0N(0.0,omega_lam0) — ID
ETA_alphresN(0.0,omega_alphres) — ID
ETA_pd1N(0.0,omega_pd1) — ID
ETA_pd2N(0.0,omega_pd2) — ID
ETA_pd3N(0.0,omega_pd3) — ID
ETA_pd4N(0.0,omega_pd4) — ID
ETA_ClN(0.0,omega_Cl) — ID
ETA_V1N(0.0,omega_V1) — ID
ETA_QQN(0.0,omega_QQ) — ID
ETA_V2N(0.0,omega_V2) — ID
ETA_ClmN(0.0,omega_Clm) — ID
ETA_Vm1N(0.0,omega_Vm1) — ID
ETA_Vm2N(0.0,omega_Vm2) — ID
ETA_KaN(0.0,omega_Ka) — ID
ETA_KamN(0.0,omega_Kam) — ID
EPS_YN(0.0,1.0) — DV
log(d1)=(log(POP_d1)+ETA_d1)
log(d2)=(log(POP_d2)+ETA_d2)
log(d3)=(log(POP_d3)+ETA_d3)
log(d4)=(log(POP_d4)+ETA_d4)
log(QQm)=(log(POP_QQm)+ETA_QQm)
log(pdr)=(log(POP_pdr)+ETA_pdr)
log(st1)=(log(POP_st1)+ETA_st1)
log(st2)=(log(POP_st2)+ETA_st2)
log(st3)=(log(POP_st3)+ETA_st3)
log(st4)=(log(POP_st4)+ETA_st4)
log(x0)=(log(POP_x0)+ETA_x0)
log(pdm)=(log(POP_pdm)+ETA_pdm)
log(lam)=(log(POP_lam)+ETA_lam)
log(lam0)=(log(POP_lam0)+ETA_lam0)
log(alphres)=(log(POP_alphres)+ETA_alphres)
log(pd1)=(log(POP_pd1)+ETA_pd1)
log(pd2)=(log(POP_pd2)+ETA_pd2)
log(pd3)=(log(POP_pd3)+ETA_pd3)
log(pd4)=(log(POP_pd4)+ETA_pd4)
log(Cl)=(log(POP_Cl)+ETA_Cl)
log(V1)=(log(POP_V1)+ETA_V1)
log(QQ)=(log(POP_QQ)+ETA_QQ)
log(V2)=(log(POP_V2)+ETA_V2)
log(Clm)=(log(POP_Clm)+ETA_Clm)
log(Vm1)=(log(POP_Vm1)+ETA_Vm1)
log(Vm2)=(log(POP_Vm2)+ETA_Vm2)
log(Ka)=(log(POP_Ka)+ETA_Ka)
log(Kam)=(log(POP_Kam)+ETA_Kam)
Correlation matrix for level ID and random effects: ETA_d1, ETA_d2
( 1 0 0 1 )

Observation Model

Observation Y1
Continuous / Residual Data

Parameters
Y1=(output1+(proportionalError(b_1,output1) ×EPS_Y))

Observation Y2
Continuous / Residual Data

Parameters
Y2=(output2+(proportionalError(b_2,output2) ×EPS_Y))

Observation Y3
Continuous / Residual Data

Parameters
Y3=(output3+(proportionalError(b_3,output3) ×EPS_Y))

Observation Y4
Continuous / Residual Data

Parameters
Y4=(output4+(proportionalError(b_4,output4) ×EPS_Y))

Observation Y5
Continuous / Residual Data

Parameters
Y5=(output5+(proportionalError(b_5,output5) ×EPS_Y))

Observation Y6
Continuous / Residual Data

Parameters
Y6=(output6+(proportionalError(b_6,output6) ×EPS_Y))

Observation Y7
Continuous / Residual Data

Parameters
Y7=(output7+(combinedError1(a_7,b_7,output7) ×EPS_Y))

Estimation Steps

Estimation Step estimStep_1

Estimation parameters

Initial estimates for non-fixed parameters

  • POP_d1=0.111
  • POP_d2=0.101
  • POP_d3=0.169
  • POP_d4=0.00659
  • POP_QQm=159
  • POP_pdr=0.0286
  • POP_st1=0
  • POP_st2=0
  • POP_st3=0
  • POP_st4=0
  • POP_x0=0
  • POP_pdm=0.129
  • POP_lam=1.93E-4
  • POP_lam0=0.00189
  • POP_alphres=0.0102
  • POP_pd1=144
  • POP_pd2=22
  • POP_pd3=36.4
  • POP_pd4=98.1
  • POP_Cl=26.9
  • POP_V1=3220
  • POP_QQ=17.5
  • POP_V2=127
  • POP_Clm=15.6
  • POP_Vm1=3710
  • POP_Vm2=156
  • POP_Ka=0.0715
  • POP_Kam=0.177
  • b_1=0.512
  • b_2=0.429
  • b_3=0.503
  • b_4=0.137
  • b_5=0.28
  • b_6=0.135
  • a_7=0.241
  • b_7=0.0856
  • omega_d1=4.94
  • omega_d2=0.485
  • omega_d3=0.517
  • omega_d4=0.468
  • omega_QQm=0
  • omega_pdr=0
  • omega_st1=0.348
  • omega_st2=0
  • omega_st3=0
  • omega_st4=0
  • omega_x0=0
  • omega_pdm=1.74
  • omega_lam=2.11
  • omega_lam0=0
  • omega_alphres=0
  • omega_pd1=0
  • omega_pd2=0.468
  • omega_pd3=0.988
  • omega_pd4=0.384
  • omega_Cl=0.297
  • omega_V1=1.3
  • omega_QQ=0
  • omega_V2=0
  • omega_Clm=0.444
  • omega_Vm1=0.908
  • omega_Vm2=0
  • omega_Ka=0
  • omega_Kam=0
Estimation operations
1) Estimate the population parameters
    Algorithm SAEM

    Step Dependencies

    • estimStep_1
     
    Help