DDMODEL00000231: PK/PD model of sunitinib in non-small cell lung cancer patients

Short description:
Sunitinib is a potent inhibitor of receptor tyrosine kinases, including VEGFR-1, -2, and -3, stem cell factor receptor and others, which have been implicated in tumor cell growth indirectly via tumor-dependent angiogenesis. This is a semi-mechanistic PK/PD model developed and validated using clinical trail data.
PharmML (0.6.1) |
|
Moran Optimata
|
Context of model development: | Disease Progression model; Dose & Schedule Selection and Label Recommendation; Clinical end-point; Mechanistic Understanding; |
Model implementation requiring submitter’s additional knowledge: | Yes; |
Modelling context description: | This is a semi-mechanistic PK/PD model for sunitinib therapy in non-small cell lung cancer patients. It was developed and validated using clinical trail data provided by the drug developer.; |
Modelling task in scope: | estimation; simulation; |
Nature of research: | Early clinical development (Phases I and II); |
Therapeutic/disease area: | Oncology; |
Annotations are correct. |
|
This model is not certified. |
- Model owner: Moran Optimata
- Submitted: Oct 27, 2016 9:32:06 AM
- Last Modified: Oct 27, 2016 9:32:06 AM
Revisions
Independent variable T
Function Definitions
Structural Model sm
Variable definitions
Initial conditions
Variability Model
Level | Type |
---|---|
DV |
residualError |
ID |
parameterVariability |
Parameter Model
Parameters;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
— ID
— ID
— ID
— ID
— ID
— ID
— ID
— ID
— ID
— ID
— ID
— ID
— ID
— ID
— ID
— ID
— ID
— ID
— ID
— ID
— ID
— ID
— ID
— ID
— ID
— ID
— ID
— ID
— DV
Correlation matrix for level ID and random effects: ETA_d1, ETA_d2
Observation Model
Observation Y1
Continuous / Residual Data
Parameters Observation Y2
Continuous / Residual Data
Parameters Observation Y3
Continuous / Residual Data
Parameters Observation Y4
Continuous / Residual Data
Parameters Observation Y5
Continuous / Residual Data
Parameters Observation Y6
Continuous / Residual Data
Parameters Observation Y7
Continuous / Residual Data
Parameters Estimation Steps
Estimation Step estimStep_1
Estimation parameters
Initial estimates for non-fixed parameters
Estimation operations
1) Estimate the population parameters
Step Dependencies
- estimStep_1