DDMODEL00000233: Zierhut_2008_Population PKPD model for Fc-osteoprotegerin in healthy postmenopausal women

  public model
Short description:
PK/PD model for Fc-OPG and urinary NTx bone marker. This model was coded from the original publication to be run in mrgsolve (https://www.github.com/metrumresearchgroup/mrgsolve).
PharmML 0.8.x (0.8.1)
  • Population PK-PD model for Fc-osteoprotegerin in healthy postmenopausal women.
  • Zierhut ML, Gastonguay MR, Martin SW, Vicini P, Bekker PJ, Holloway D, Leese PT, Peterson MC
  • Journal of pharmacokinetics and pharmacodynamics, 8/2008, Volume 35, Issue 4, pages: 379-399
  • Department of Bioengineering, University of Washington, Seattle, WA 98195-2255, USA.
  • Osteoporosis is a metabolic bone disease resulting from increased bone resorption and characterized by low bone mass that leads to increased bone fragility and risk of fracture, particularly of the hip, spine and wrist. Bone resorption is dependent on receptor activator of NF-kappa B ligand (RANKL), which binds to RANK receptor on preosteoclasts to initiate osteoclastogenesis and maintains osteoclast function and survival. To neutralize the effects of RANKL, the body naturally produces the protein osteoprotegerin (OPG), which acts as a decoy receptor for RANKL and contributes to bone homeostasis. We describe the piecewise development of a three-compartment pharmacokinetic model with both linear and Michaelis-Menten eliminations, and an indirect pharmacodynamic response model to describe the pharmacokinetics and pharmacodynamics, respectively, of the fusion protein, Fc-osteoprotegerin (Fc-OPG), in healthy postmenopausal women. Subsequently, model verification was performed and used to address study design questions via simulation. The model was developed using data from eight cohorts (n = 13 subjects/cohort; Fc-OPG:placebo = 10:3) classified by dose level (0.1, 0.3, 1.0, or 3.0 mg/kg) and route of administration (intravenous [IV] or subcutaneous [SC]). Fc-OPG serum concentrations and urinary N-telopeptide/creatinine ratios (NTX) following both IV and SC administration were available. The model provided an adequate fit to the observed data and physiologically plausible parameter estimates. Model robustness was tested via a posterior predictive check with the model performing well in most cases. Subsequent clinical trial simulations demonstrated that a single 3.0-mg/kg SC dose of Fc-OPG would be expected to produce, at 14 days post-dose, a median NTX percentage change from baseline of -45% (with a 95% prediction interval ranging from -34% to -60%). Lastly, model ruggedness was evaluated using local and global sensitivity analysis methods. In conclusion, the model selection and simulation strategies we applied were rigorous, useful, and easily generalizable.
Kyle Baron, Mike K Smith
Context of model development: Dose & Schedule Selection and Label Recommendation; Clinical end-point;
Discrepancy between implemented model and original publication: None that I know of.;
Model compliance with original publication: Yes;
Model implementation requiring submitter’s additional knowledge: No;
Modelling context description: Early dose selection.;
Modelling task in scope: simulation;
Nature of research: Early clinical development (Phases I and II);
Therapeutic/disease area: Endocrinology;
Annotations are correct.
This model is not certified.
  • Model owner: Kyle Baron
  • Submitted: Nov 18, 2016 9:56:30 PM
  • Last Modified: Jul 13, 2018 8:37:51 AM
Revisions
  • Version: 52 public model Download this version
    • Submitted on: Jul 13, 2018 8:37:51 AM
    • Submitted by: Mike K Smith
    • With comment: Edited model metadata online.
  • Version: 48 public model Download this version
    • Submitted on: Mar 27, 2017 3:59:11 PM
    • Submitted by: Mike K Smith
    • With comment: Edited model metadata online.
  • Version: 46 public model Download this version
    • Submitted on: Feb 9, 2017 11:04:54 AM
    • Submitted by: Mike K Smith
    • With comment: Model revised without commit message
  • Version: 45 public model Download this version
    • Submitted on: Nov 19, 2016 6:05:58 PM
    • Submitted by: Kyle Baron
    • With comment: Edited model metadata online.
  • Version: 43 public model Download this version
    • Submitted on: Nov 19, 2016 2:07:09 PM
    • Submitted by: Kyle Baron
    • With comment: Edited model metadata online.
  • Version: 41 public model Download this version
    • Submitted on: Nov 18, 2016 11:55:33 PM
    • Submitted by: Kyle Baron
    • With comment: Edited model metadata online.
  • Version: 23 public model Download this version
    • Submitted on: Nov 18, 2016 9:56:30 PM
    • Submitted by: Kyle Baron
    • With comment: Model revised without commit message

Name

Zierhut_2008_Population PKPD model for Fc-osteoprotegerin in healthy postmenopausal women

Independent Variables

T

Function Definitions

additiveError:realadditive:real=additive
combinedError1:realadditive:realproportional:realf:real=additive+proportionalf

Covariate Model: cm

Continuous Covariates

IV

Parameter Model: pm

Random Variables

ECLvm_mdl.ID~Normal2mean=0var=pm.PPV_CL
EVCvm_mdl.ID~Normal2mean=0var=pm.PPV_VC
EVP1vm_mdl.ID~Normal2mean=0var=pm.PPV_VP1
EVP2vm_mdl.ID~Normal2mean=0var=pm.PPV_VP2
EQ1vm_mdl.ID~Normal2mean=0var=pm.PPV_Q1
EKAvm_mdl.ID~Normal1mean=0stdev=pm.PPV_KA
EFSCvm_mdl.ID~Normal1mean=0stdev=pm.PPV_FSC
ETA_KSYN_KDEG_IC50vm_mdl.ID~MultivariateNormal1mean=000covariancematrix=pm.PPV_KSYN_KDEG_IC50
EPS_PKvm_err.DV~Normal2mean=0var=1
EPS_PDvm_err.DV~Normal2mean=0var=1

Population Parameters

TVCL
TVVC
TVVP1
TVVP2
TVQ1
TVQ2
TVKA
TVVMAX
TVKM
TVFSC
TVKSYN
TVKDEG
TVIC50
PPV_CL
PPV_VC
PPV_VP1
PPV_VP2
PPV_Q1
PPV_KA
PPV_FSC
PPV_KSYN_KDEG_IC50
ADDIV
ADDSC
PDPROP
PDADD
MDL__ETA_KSYN_KDEG_IC50_1=pm.ETA_KSYN_KDEG_IC501
MDL__ETA_KSYN_KDEG_IC50_2=pm.ETA_KSYN_KDEG_IC502
MDL__ETA_KSYN_KDEG_IC50_3=pm.ETA_KSYN_KDEG_IC503

Individual Parameters

lnCL=lnpm.TVCL+pm.ECL
lnVC=lnpm.TVVC+pm.EVC
lnVP1=lnpm.TVVP1+pm.EVP1
lnVP2=lnpm.TVVP2+pm.EVP2
lnQ1=lnpm.TVQ1+pm.EQ1
Q2=pm.TVQ2
lnKA=lnpm.TVKA+pm.EKA
VMAX=pm.TVVMAX
KM=pm.TVKM
lnFSC=lnpm.TVFSC+pm.EFSC
lnKSYN=lnpm.TVKSYN+pm.MDL__ETA_KSYN_KDEG_IC50_1
lnKDEG=lnpm.TVKDEG+pm.MDL__ETA_KSYN_KDEG_IC50_2
lnIC50=lnpm.TVIC50+pm.MDL__ETA_KSYN_KDEG_IC50_3

Structural Model: sm

Variables

NTX_0=pm.KSYNpm.KDEG
F_SC=pm.FSC1.0+pm.FSC
TSC=-pm.KAsm.SCSCT=0=0
TCENT=pm.KAsm.SC-pm.CL+pm.Q1+pm.Q2+sm.CLNLsm.CENTpm.VC+pm.Q1sm.P1pm.VP1+pm.Q2sm.P2pm.VP2CENTT=0=0
TP1=sm.CENTpm.Q1pm.VC-sm.P1pm.Q1pm.VP1P1T=0=0
TP2=sm.CENTpm.Q2pm.VC-sm.P2pm.Q2pm.VP2P2T=0=0
TCLNL=pm.VMAXsm.CP+pm.KMCLNLT=0=0
TNTX=pm.KSYN1.0-sm.CPpm.IC50+sm.CP-pm.KDEGsm.NTXNTXT=0=sm.NTX_0
CP=sm.CENTpm.VC1000000.0

Observation Model: om1

Continuous Observation

lnPK=lnsm.CP+additiveErroradditive={pm.ADDIVifcm.IV=2pm.ADDSCotherwise+pm.EPS_PK

Observation Model: om2

Continuous Observation

PD=sm.NTX+combinedError1additive=pm.PDADDproportional=pm.PDPROPf=sm.NTX+pm.EPS_PD

External Dataset

OID
nm_ds
Tool Format
NONMEM

File Specification

Format
csv
Delimiter
comma
File Location
Simulated_opg.txt

Column Definitions

Column ID Position Column Type Value Type
ID
1
id
int
TIME
2
idv
real
CMT
3
cmt
int
AMT
4
dose
real
DVID
5
dvid
int
DV
6
dv
real

Column Mappings

Column Ref Modelling Mapping
ID
vm_mdl.ID
TIME
T
AMT
{sm.SCifCMT=1AMT>0sm.CENTifCMT=2AMT>0
DV
{om1.PKifDVID=1om2.PDifDVID=2
CMT
cm.IV

Estimation Step

OID
estimStep_1
Dataset Reference
nm_ds

Parameters To Estimate

Parameter Initial Value Fixed? Limits
pm.TVCL
168
false
pm.TVVC
2800
false
pm.TVVP1
443
false
pm.TVVP2
269
false
pm.TVQ1
15.5
false
pm.TVQ2
3.02
false
pm.TVKA
0.0131
false
pm.TVVMAX
13300
false
pm.TVKM
6.74
false
pm.TVFSC
0.0719
false
pm.TVKSYN
0.864
false
pm.TVKDEG
0.0204
false
pm.TVIC50
5.38
false
pm.PPV_CL
0.0391
false
pm.PPV_VC
0.0102
false
pm.PPV_VP1
0.0144
false
pm.PPV_VP2
0.0333
false
pm.PPV_Q1
0.0379
false
pm.PPV_KA
0.0457
false
pm.PPV_FSC
0.263
false
pm.PPV_KSYN_KDEG_IC50
(0.2810.08670.03250.00.01.18)
false
pm.ADDIV
0.0193
false
pm.ADDSC
0.733
false
pm.PDPROP
0.0407
false
pm.PDADD
20.7
false

Operations

Operation: 1

Op Type
generic
Operation Properties
Name Value
algo
saem

Step Dependencies

Step OID Preceding Steps
estimStep_1
 
Help