$PROBLEM KPD model of CTC count and PSA $INPUT ID TIME AMT DV CMT MDV $DATA Simulated_KPD_CTC.count_PSA.csv IGNORE=@ $SUBROUTINE ADVAN13 TOL=9 $MODEL NCOMP=8 COMP=(A1) ;PK chemo COMP=(A2) ;PK hormo COMP=(A3) ;TS COMP=(A4) ;CTC COMP=(A5) ;Delayed PK chemo COMP=(A6) ;Delayed PK hormo COMP=(A7) ;Delayed TS COMP=(A8) ;PSA $PK CALLFL=-2 ; Call the PK subroutine with every event record, with additional and lagged doses MU_1=LOG(THETA(1)) TS0=EXP(MU_1+ETA(1)) ; TS0 MU_2=LOG(THETA(2)) K1=EXP(MU_2+ETA(2)) ; Param PK Chemo MU_3=LOG(THETA(3)) K2=EXP(MU_3+ETA(3)) ; Param PK Hormo MU_4=LOG(THETA(4)) Q501=EXP(MU_4+ETA(4)) ; Param PK Chemo MU_5=LOG(THETA(5)) Q502=EXP(MU_5+ETA(5)) ; Param PK Hormo MU_6=LOG(THETA(6)) KOUTTS=EXP(MU_6+ETA(6)) ; Param TS MU_7=THETA(7) TH=EXP(MU_7+ETA(7)) KINTS=(TS0*KOUTTS)/((TH)/(1+(TH))) ; Param TS MU_8=LOG(THETA(8)) KINPSA=EXP(MU_8+ETA(8)) MU_9=LOG(THETA(9)) KOUTPSA=EXP(MU_9+ETA(9)) MU_10=LOG(THETA(10)) PSA0=EXP(MU_10+ETA(10)) MU_11=THETA(11) K0=MU_11+ETA(11) ; Zero-order production rate MU_12=THETA(12) ALAG5=MU_12+ETA(12) ; TR: Delay duration ALAG6=ALAG5 ALAG7=ALAG5 F4=K0*ALAG5 ; initial condition : R0=K0*TR . Bioaivalability for central compartment MU_13=LOG(THETA(13)) OVDP=EXP(MU_13+ETA(13)) MU_14=LOG(THETA(14)) W1=EXP(MU_14+ETA(14)) A_0(1)=0 A_0(2)=0 A_0(3)=TS0 A_0(5)=0 A_0(6)=0 A_0(7)=TS0 A_0(8)=PSA0 $DES DADT(1)=-K1*A(1) ;time course of Chemo amount DADT(2)=-K2*A(2) ;time course of Hormo amount DADT(3)=KINTS*(1-(A(1)/(Q501+A(1))))*(1-(A(2)/(Q502+A(2))))-KOUTTS*A(3) ; Dynamic tumor size, latent variable DADT(5)=-K1*A(5) ; delayed time course of Chemo amount DADT(6)=-K2*A(6) ; delayed time course of Hormo amount DADT(7)=KINTS*(1-(A(5)/(Q501+A(5))))*(1-(A(6)/(Q502+A(6))))-KOUTTS*A(7) ; Delayed Dynamic tumor size, latent variable A7=TS0 IF(T.GT.ALAG5) A7=A(7) DADT(4)=K0*A(3)-K0*A7 ; time course of nber of cells DADT(8)=KINPSA*A(3)-KOUTPSA*A(8) $ERROR NCTC=A(4)*0.0015 ; CTC in aliquots (alpha: scale factor) PSA=A(8) IF (PSA.LT.0.00001) PSA = 0.00001 CT=DV IF(CT.LT.0) CT=0.00001 LFAC=GAMLN(CT+1.) LGAM1=GAMLN(CT+1/OVDP) LGAM2=GAMLN(1/OVDP) LTRM1=(LOG(1/(1+OVDP*NCTC)))*(1/OVDP) LTRM2=(LOG(NCTC/(NCTC+1/OVDP)))*(CT) ;Logarithm of the Negative Binomial distribution LNB = LGAM1-LFAC-LGAM2+LTRM1+LTRM2 ;Ln(negative binomial) IF (CMT.EQ.4) THEN F_FLAG=2 ;-2 Log Likelihood: Y=-2*LNB ENDIF IF (CMT.EQ.8) THEN F_FLAG=0 IPRED=LOG(PSA) Y=IPRED+W1*ERR(1) IRES=DV-IPRED IWRES=IRES/W1 ENDIF IF (ABS(ETA(1)).GT.50) EXIT 1 1 IF (ABS(ETA(2)).GT.50) EXIT 1 2 IF (ABS(ETA(3)).GT.50) EXIT 1 3 IF (ABS(ETA(4)).GT.50) EXIT 1 4 IF (ABS(ETA(5)).GT.50) EXIT 1 5 IF (ABS(ETA(6)).GT.50) EXIT 1 6 IF (ABS(ETA(7)).GT.50) EXIT 1 7 IF (ABS(ETA(8)).GT.50) EXIT 1 8 IF (ABS(ETA(9)).GT.50) EXIT 1 9 IF (ABS(ETA(10)).GT.50) EXIT 1 10 IF (ABS(ETA(11)).GT.100) EXIT 1 11 IF (ABS(ETA(12)).GT.20) EXIT 1 12 IF (ABS(ETA(13)).GT.50) EXIT 1 13 $THETA 1 FIX 2.48E-01 4.49E-01 2.61E-04 3.97E-03 5.13E-03 6.33E+00 1.40E+00 8.13E-03 1.53E+02 3.08E+02 5.77E+01 4.89E+00 3.00E-01 0.3 $OMEGA 0.0000001 FIX $OMEGA BLOCK(9) 7.23E-01 -6.98E-01 1.83E+00 -6.38E-01 -6.34E-01 4.76E+00 -7.99E-01 -2.28E-01 2.93E+00 2.84E+00 3.51E-01 2.25E+00 -2.65E+00 -4.24E+00 2.06E+01 2.37E-01 4.00E-02 -7.51E-01 -9.54E-01 3.43E+00 7.86E-01 1.31E-01 9.74E-01 -1.81E+00 -1.45E+00 -6.04E-01 -9.75E-02 2.60E+00 3.12E-01 4.51E-02 -2.29E+00 -1.16E+00 1.84E+00 5.78E-01 9.67E-02 1.53E+00 1.15E-01 6.93E-01 -1.31E+00 -1.25E+00 -3.02E-01 1.53E-01 2.30E+00 3.48E-02 2.40E+00 $OMEGA BLOCK(2) 1.43E+03 2.94E+02 6.19E+01 $OMEGA 2.25 $OMEGA 0.0000001 FIX $SIGMA 1 FIX ;ERR1 $ESTIMATION METHOD=SAEM LAPLACE INTER NUMERICAL SLOW NOHABORT NBURN=0 NITER=0 PRINT=1 NSIG=3 SIGL=9 GRD=DDDDDDDDDDDDDS